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Abstract. The Feynman-Haken variational path integral theory is, for the first time, generalized to cal-
culate the ground-state energy of an electron coupled simultaneously to a Coulomb potential and to a
longitudinal-optical (LO) phonon field in parabolic quantum wires. It is shown that the polaronic cor-
rection to the ground-state energy is more sensitive to the electron-phonon coupling constant than the
Coulomb binding parameter and monotonically stronger as the effective wire radius decreases. We apply
our calculations to several semiconductor quantum wires and find that the polaronic correction can be
considerably large.

PACS. 71.38.+i Polarons and electron-phonon interactions – 63.20.Kr Phonon-electron and
phonon-phonon interactions

1 Introduction

With the recent progress in microfabrication technology, it
becomes possible to fabricate the synthetic polar semicon-
ductor structures with low dimensionality, such as dielec-
tric slabs, heterojunctions, quantum wells, quantum dots,
and quantum wires. One subject of interest is the quan-
tum wires [1–3], which now can be fabricated within low-
nanometer size. Many investigations have been devoted to
the polaronic effects in quasi-one-dimensional systems (an
incomplete list is given by Refs. [4–17]).

Polarons in quantum wires are markedly different from
those in bulk materials, due to the presence of wire poten-
tials with the form V (ρ = x, y), which confine the carriers
motion in the ρ-plane transverse to the wire axis (set-
ting z direction). First, the confining potential may bring
about much rich phonon modes [4–7] such as confined
phonon modes, interface phonon modes, etc. Second, even
for the confining potential itself, there are so many types
in the literature. It can be divided into three major types:
the rectangular type, cylindrical type, and parabolic type.
Further, it can also be characterized as finite or infinite,
symmetric or asymmetric. A variety of phonon modes and
various types of the wire potential have given rise to rich
and varied investigations in this field in the last decade.

Recently, much attention has been attracted to the in-
vestigation of the solely effect of the interaction of electron
and bulk LO phonons and polaronic properties in quan-
tum wires [7–17]. More recently, the relevant problems of
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an electron coupled simultaneously to a positive Coulomb
impurity and to a longitudinal-optical (LO) phonon field
in parabolic quantum wires has been considered in the
presence of a electric field [15] and a magnetic field [16],
and in rectangular cross section quantum wires has been
investigated in the absence of any external field [17]. The
bound polaron problem may be more realistic in quantum
wires and therefore of much significance.

In the present paper, we will, for the first time,
generalize the previous Feynman-Haken [FH] path in-
tegral theory [18–21] to study the solely effect of the
electron-longitudinal-optical (LO) phonon interactions on
the ground-state energy of a bound polaron in polar
semiconductor quantum wires with parabolic confinement.
Such a choice for the confining potential, besides facilitat-
ing the derivations in the theory, is also, more importantly,
close to realistic case. Recently, Kash et al. [22] have ob-
served some good evidences for the existence of a parabolic
potential well in quantum wires produced by strain gradi-
ents using a patterned carbon stress.

2 Formula

Following Platzman’s work [23] on bound bulk polarons,
the Hamiltonian describing bound polarons in quantum
wires with parabolic potential can be written as (in
Feynman units: m = ~ = ωLO = 1)

H=
p2

2
+V (ρ)− β

r
+
∑
k

a†kak+
∑
k

(vkake−ik·r+H.C.),
(1)
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where r = (ρ, z) and p are the position and the momentum
operators of the electron, V (ρ) = 1

2ω
2ρ2 is the confining

potential of a quantum wire, with ω being in units of ωLO,
measuring the confining strength of the parabolic poten-
tial, a†k and ak are respectively the creation and annihi-
lation operators of the LO phonons with the wave vector
k = (kρ, kz)

|vk|2 =
2
√

2πα
νk2

, β =

e2

~ωLOε0(
~

mωLO

)1/2
. (2)

with ν being the crystal volume, α and β being the
electron-phonon coupling constant and Coulomb binding
parameter. Here we should mention that the impurity-
phonon interactions have already been eliminated.

As a first step, following Feynman’s [18] first proce-
dure, integrating over the path integral over the phonon
coordinates, assuming that they are in their ground-state,
we can readily obtain the true action corresponding to
Hamiltonian (1)

S =
∫ tb

ta

dt
[
−1

2
ṙ2 − 1

2
ω2ρ2 +

β

r

]
+

1
2

∑
k

∫ tb

ta

∫ tb

ta

|vk|2eik·(r(t)−r(s))e−|t−s|dtds. (3)

Next task is to choose a path integrable trial action to
get a variational expression for the ground-state energy.
In this paper, we shall follow the procedure developed by
Haken [19] in the treatment of the exciton-phonon prob-
lem and later applied to the bound bulk polarons by Mat-
suura [20] and bound surface polarons by Bhattacharya
et al. [21]. We choose the trial action S1 as following

S1 =
∫ tb

ta

dt
[
−1

2
ṙ2 − Veff(r(t))

]
=
∫ tb

ta

dtLeff , (4)

where Veff(r(t)) is the effective trial potential to be cho-
sen later. The corresponding quantum-mechanical Hamil-
tonian then satisfies

HeffΦ
eff
n (r) =

[
1
2
p2 + Veff(r)

]
Φeff
n (r)

= Eeff
n Φeff

n (r), (5)

where Φeff
0 (r) and Eeff

0 are the ground-state energy and
wave function of Heff .

After some derivations similar to those
in references [19–21], one can obtain the FH energy
as

EFH = 〈Φeff
0 (r)|

[
1
2
p2 +

1
2
ω2ρ2 − β

r

]
|Φeff

0 (r)〉

−
∑
j

∑
k

|〈Φeff
j (r)|[vke−ik·r]|Φeff

0 (r)〉|2

Eeff
j −Eeff

0 + 1
· (6)

It is to note that, if the effective potential Veff(r) is cho-
sen to be such a form that the corresponding Schrödinger
equation can be analytically solved, substitution of
the relevant energy eigenfunctions and eigenvalues into
equations (6) will produce the upper bound to the exact
ground state energy of the Hamiltonian (1).

In this paper, according to the symmetry of the system
studied, we will choose a variational effective potential
as the following Harmonic-Oscillator type which is only
isotropic in ρ−plane

Veff(r) =
1
2
λ2
ρρ

2 +
1
2
λ2
zz

2, (7)

where λρ and λz is a variational parameter to be deter-
mined. Such a form of Veff(r) is different from those in
references [19–21] and more suitable for the problem in
quantum wires.

The energy eigenfunctions and eigenvalues correspond-
ing to potential (7) are

Φeff
j (r) =

(
λρλ

1/2
z

π3/22jx+jy+jzjx!jy!jz !

)1/2

×Hjx(
√
λρx)Hjy (

√
λρy)Hjz (

√
λzz)e−(λρρ

2/2+λzz
2/2)

Eeff
j = (jx + jy + 1)λρ +

(
jz +

1
2

)
λz , (8)

where Hn(...) is the Hermite polynomial of order n. Then
the first line of equation (6) becomes

I1 =
1
2
λρ +

1
4
λz +

ω2

2λρ
− β

π1/2

√
λz
A

ln
(

1 +A

1−A

)
(9)

where

A =

√
1− λz

λρ
· (10)

Using the transformations

1
Eeff
j −Eeff

0 + 1
=
∫ ∞

0

e−(Eeff
j −Eeff

0 +1)tdt, (11)

and the Slater sum rule for the Hermit polynomials∑
n

1
2nn!

Hn(λx)Hn(λx′)e−
1
2λ

2(x2+x′2)−2np

=
ep√

2 sinh(2p)
e−

1
4λ

2[(x+x′)2 tanh(p)+(x−x′)2 coth(p)],

(12)

one can perform the summation over ji, (i = x, y, z) in
equation (6) easily. Then using

∑
k

e−ik·(r−r′)

k2
=

ν

4π
1

|r− r′| , (13)
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Fig. 1. The polaronic energy correction −4EFH within the FH path integral theory as a function of, (a) α and (b) β, for two
the effective wire radius R = 0.5 (solid lines) and 1.0 (dotted lines) (in Feynman units).

one can integrate over the electron position vectors r and
r′ by transforming these vectors into the center-of-mass
vector u = (r + r′)/2 and the relative vectors v = r − r′,
then the second line of equation (6) is simplified to

I2 = − α

2
√
π

∫ ∞
0

dte−t
√
λz√

1− e−λzt
1√

1−B

× ln
(

1 +
√

1−B
1−
√

1−B

)
(14)

where

B =
λz(1 + coth(λzt/2)
λρ(1 + coth(λρt/2)

· (15)

Finally the FH energy reads

EFH = I1 + I2. (16)

So far, for given α, β, and ω, one can obtain the
ground-state energy of Hamiltonian (1) by minimizing
equation (16) respect to λρ and λz. It should be pointed
out that this Feynman energy expression (16) is suited for
the entire range of electron-phonon coupling constant α,
strength of the confining potential ω, and Coulomb bind-
ing parameters β.

In order to calculate the polaronic correction to the
ground-state energy of this system, we also need to have
the energy of an impurity in a quantum wire without
electron-phonon interaction. Obviously, it can be obtained
from equation (9) by finding out the optimal fit to λρ and
λz . The polaronic energy correction is just the difference
between these two energies.

3 Results and discussions

Physically, it is expected that the polaronic energy correc-
tion −4E is more pronounced for larger electron-phonon
coupling constant α and Coulomb binding parameters β.
This is consistent with the our numerical results displayed
in Figure 1a and b, where we plot the variation of −4E

as the a function of α and β respectively for different ef-
fective wire radius R = 1/

√
ω. It is also found that the

value of −4E is more sensitive to the value of α than β
and decreases with larger R.

To show the effectiveness of this approach, we will also
study this system within well-known Landau-Pekar (LP)
variational theory [24]. The main elements of this the-
ory was employed to study bound polarons in quantum
wires with rectangular cross section [17]. The adiabatic
polaron ground-state can be given through following prod-
uct ansatz

|...〉 = φ(r)|A〉, (17)

where the electron part φ(r) is chosen as the following
product of two Gaussian type wave functions in transverse
and longitudinal coordinate

φ(r) = ϕ(ρ)χ(z),

ϕ(ρ) ∼ e−λ1ρ
2/2; χ(z) ∼ e−λ2z

2/2, (18)

with λ1 and λ2 being a variational parameters to be de-
termined, and |A〉 is the phonon coherent state,

|A〉 = e
P
k(f(k)a†k−f

∗(k)ak |0〉. (19)

One can easily derived the LP energy as follows

ELP =
1
2
λ1 +

1
4
λ2 +

ω2

2λ1
− β

π1/2

√
λ2√

1− λ2
λ1

× ln

1 +
√

1− λ2
λ1

1−
√

1− λ2
λ1

− α√
π

√
λ1√

λ1
λ2
− 1

× ln

(√
λ1

λ2
− 1 +

√
λ1

λ2

)
. (20)

where λ1 and λ2 are the variational parameters.
For convenience, we introduce the relative difference, η,

between the polaronic energy corrections −4E obtained
by these two variational approaches: FH and LP methods

η =
4EFH −4ELP

4EFH
· (21)
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Fig. 2. The relative difference between results for the polaronic
energy correction within the FH theory and the LP theory, η,
as a function of the wire radius R for different values of α and
β (in Feynman units).

In Figure 2, we plot the values of η as a function as
a function of the effective wire radius R for coupling con-
stants α and Coulomb binding parameters β which are
in the range of parameters of practical materials. It is
obviously shown that the polaronic energy correction ob-
tained in the FH method is considerably larger than those
obtained within LP theory. From the viewpoint of varia-
tional principle, the FH path integral approach is there-
fore superior to the famous LP theory. Certainly, this
superiority will disappear in the limit of R → 0 , for the
reason that the effective electron-phonon coupling is ex-
tremely strengthened in this limit and LP theory is known
to be suitable for strong coupling or strong coulomb bind-
ing limit.

Here, we should present a few remarks about paper [17]
by Osorio et al. The author have, in fact, utilized the main
idea of LP theory. But the trial wave function for the elec-
tron along x(y) direction in equation (6) of reference [17] is
just the eigenfunctions corresponding to the system with-
out electron-phonon coupling and the positive Coulomb
impurity and thus does not include any variational pa-
rameters. Therefore, in principle, their results are even
not so good as those obtained by the original LP theory.
The latter is further inferior to the present theory. So this
can show the importance of the present theory.

Next more important step is to apply our calculations
to several semiconductor quantum wires such as CdS,
CdSe, CdTe, and GaAs, which are shown in Figure 1. The
material parameters used in the calculation are given in
Table 1, which are cited from reference [25]. It is clear that
the polaronic effects are quite pronounced in these mate-
rials when R is below a few nanometers. The polaronic
effect decreases monotonically with R and changes very
slowly as R approaches asymptotically to the bulk limit.
We also find the magnitude of the polaronic correction
is predominantly determined by the electron-phonon cou-
pling constant and the optical phonon energy, and only

Table 1. Some parameters of CdS, CdSe, CdTe, and GaAs.
(ωLO is in unit of meV and m′ in unit of bare electron mass).

Material m ωLO α β

CdS 0.155 38.26 0.527 1.225

CdSe 0.130 26.58 0.460 1.238

CdTe 0.091 20.84 0.315 1.064

GaAs 0.066 36.7 0.068 0.5447

Fig. 3. The polaron energy correction, −∆E (in meV) within
the FH theory as a function the effective wire radius R (in Å)
in CdS, CdSe, CdTe, and GaAs quantum wires with parabolic
potential.

slightly influenced by the coulomb binding parameters β.
This is also agree with the observation of Figure 3.

In summary, we have studied the polaronic effect of an
electron bound to a positive Coulomb impurity in quan-
tum wires within the Feynman-Haken variational path in-
tegral theory. By selecting a more general harmonic-type
effective potential, we have derived a concise expression for
the ground-state energy of this system. Compared to the
results obtained by the LP variational theory, the present
variational results are more accurate. We observe that the
polaronic energy correction is more sensitive to the elec-
tron phonon coupling constant than the Coulomb binding
parameters. We consider a few selected polar semiconduc-
tor quantum wires and show that the polaronic energy
correction is substantial when the effective wire radius is
made below a few nanometers. Finally we should point
out the present derivation can be easily extended to the
problems of bound polarons in quantum wells as well as
quantum dots.
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